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INTRODUCTION

Subvisible particles in therapeutic protein formulations and other 
biotherapeutics are a significant product quality concern for 
pharmaceutical companies. These concerns stem not just from 
regulations such as USP <787> that focus on subvisible particle 
counts but also from the potential changes in product stability, 
quality, and safety that are associated with subvisible particle 
content1,2. Particle analysis techniques such as Flow Imaging 
Microscopy (FIM) are used to monitor these particle populations 
through many stages of biotherapeutic development as well as 
during regular production3–5. While different technologies will 
often measure different features of these particle populations 
(e.g. concentration, size, structure), they all are ultimately used 
to assess changes in the particle content that could preemptively 
indicate compromised product quality and safety.

One important sample property to monitor is the types of particles 
present in a protein formulation and their relative concentrations. 
These formulations can exhibit particles from a variety of sources 
ranging from aggregates of the protein6 to particles from the 
container-closure system used to store the formulation (e.g. 
silicone oil droplets, glass flakes)7,8 to impurities introduced during 
the manufacturing process (e.g. metal flakes). FlowCam, an FIM 
instrument, is increasingly prominent for this type of monitoring. 
FlowCam captures light microscopy images of the particles present in 
a sample which can be analyzed to determine particle concentrations 
as well as particle morphology. As different particle types often 
exhibit visually-distinct morphologies in these images, FlowCam 
images can be used to identify the different particle types in a sample9 

(FlowCam images of common biotherapeutic particle types can 
be seen in Figure 1). Additionally, many common artifacts with these 
techniques such as air bubbles and calibration beads often result in 
images of distinct particle morphologies as well—information that 
can be used to remove images from the analysis and obtain more  
accurate particle concentration measurements.

 
Figure 1. FlowCam images of particles commonly found in protein formulations

 
The most common use case for this morphology information is 
the identification of protein aggregates and silicone oil droplets 
in a formulation. Protein aggregates are ubiquitous in protein 
formulations due to the limited stability of proteins in an aqueous 
environment10 and the stresses proteins encounter during regular 
manufacturing and handling11,12. Silicone oil droplets are commonly 
introduced by silicone oil-lubricated syringes often used to administer 
these therapies to patients8. While silicone oil droplets have shown 
to be harmful in some studies13, they are generally thought to be 
more benign than protein aggregates for patients. It is therefore 
useful to be able to differentiate between these particle types 
when making product quality decisions about a sample containing 
both particle types. This particle differentiation is also a natural 
application for FlowCam due to how visually distinct these particle 
types are: silicone oil droplets often appear circular when imaged 
while protein aggregates appear more irregular and amorphous14,15, 
as can be seen in Figure 1.

The distinct morphology differences between protein aggregates 
and silicone oil droplets in conjunction with the ubiquity and 
practical importance of these particles have motivated researchers 
to develop automated algorithms for identifying protein aggregates 
and silicone oil images in FIM datasets. Many early techniques 
proposed for this analysis primarily relied on particle measurements 
from FIM images reported by the instrument14,15. These techniques 
used measurements related to particle size, color intensity, and 
roundness (i.e. aspect ratio and circularity on FlowCam) to identify 
images of round silicone oil droplets. Similar methods are also used

|   Yokogawa Fluid Imaging Technologies, Inc.   |   www.flowcam.com   |   +1-207-289-3200

WHITE PAPER
 
Robust AI Methods for Protein Biotherapeutics
VisualAITM software for sample-agnostic image analysis with FlowCam



2

methods for subvisible particle analysis, VisualAI is designed to 
be used “off the shelf”; the user does not need to provide any 
training protein aggregate or silicone oil images to obtain accurate 
classifications on their system and samples. As an additional feature, 
VisualAI offers simple anomaly detection tools to identify images of 
some common particle types that are neither protein aggregates 
nor silicone oil droplets. This feature can be used to identify images 
of particles such as polystyrene calibration beads and air bubbles—
images that often show up and can artificially raise the measured 
particle concentration. Combined, these features make VisualAI a 
powerful, robust tool – yet exceptionally easy to use for analyzing 
FlowCam data for therapeutic protein formulations.

This white paper demonstrates the classification performance 
of VisualAI on samples known to contain aggregates of different 
proteins, silicone oil droplets, or calibration beads. Images in this 
study were collected on three different FlowCam 8100 units, none 
of which were used in the development of the software. As VisualAI 
is sample-agnostic, this testing was also performed using aggregates 
of several different proteins. We also show the performance 
of the software when analyzing samples containing a known 
fraction of protein aggregates and silicone oil droplets on a fourth 
FlowCam 8100 unit to demonstrate the accuracy of the protein 
aggregate-silicone oil composition measurements with VisualAI. 
 
 

Figure 2. The graphical user interface of VisualAI. (Left) Sample FIM image collage 
from a sample containing 50% protein aggregates 50% silicone oil droplets. This 
sample was prepared as described by this study. (Right) Collages in VisualAI’s 
graphical user interface showing the images identified by AI utilities that contain 
(top) protein aggregates, (middle) silicone oil droplets, and (bottom) other particles.

by the onboard classification utilities in FlowCam’s software, 
VisualSpreadsheet®. While these methods can be effective, these 
approaches only use a small fraction of the particle morphology 
information in the image—information that could further 
differentiate these two particle types. These methods also can 
be sensitive to the software settings used to detect particles in a 
sample as they can influence the particle property values used in 
the classification.

Recently, artificial intelligence (AI)-based methods have shown 
promise for this analysis9. These techniques use the raw images 
rather than measured particle properties to differentiate between 
these particle types, using more of the information in the image to 
identify particles. Additionally, using the raw images directly results 
in particle classifications that are more robust to instrument settings. 
However, AI-based methods are more difficult to implement for most 
users. These methods typically require users to collect thousands of 
images of each particle type obtained on their FIM instrument which 
are then used to train the AI. This process is time-consuming for the 
analyst and often requires the help of researchers versed in AI to 
guide the data collection and perform the AI training. Furthermore, 
these tools have typically been developed to analyze images from a 
small selection of drug products on a single FIM instrument, resulting 
in tools that may not be as effective across multiple instruments 
and/or other drug products.

 
for identifying grayscale images of protein aggregates and silicone 
oil droplets larger than 3 µm in diameter in FlowCam 8100 and 
FlowCam LO datasets. This software gives users much more accurate 
protein aggregate-silicone oil differentiation than is possible with 
particle property-based classification utilities. Unlike other AI-based

 

VisualAITM is an add-on software package that  
integrates into VisualSpreadsheet and is designed to 
streamline AI-driven protein aggregate-silicone oil 
droplet identification. VisualAI is a pre-trained AI utility  
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METHODS

Sample Preparation: The performance of VisualAI was assessed 
on samples containing purely protein aggregates and silicone oil 
droplets suspended in phosphate buffered saline (PBS) that were not 
used in the development of VisualAI. Aggregates of four different 
proteins were prepared: bovine serum albumin (BSA), ovalbumin, 
intravenous immunoglobulin (IVIg), and the NIST monoclonal 
antibody (mAb). 1 mg/mL BSA and ovalbumin formulations were 
prepared by mixing 12 mg lyophilized protein powder with 12 mL 
PBS and gently shaking the resulting solution on a plate rocker for 30 
minutes. Formulations of the remaining proteins were prepared by 
diluting the stock protein formulation into PBS to prepare 12 mL of 
the formulation. 5 mL aliquots of these protein formulations in 15 mL 
conical tubes were then exposed to one of two accelerated stability 
stresses to induce aggregation: freeze-thaw stress and shaking 
stress. Freeze-thaw stress was performed by exposing samples to 
four freeze-thaw cycles with each cycle consisting of a 30-minute 
freeze at -20 °C followed by a 10-minute thaw at 25 °C. Shaking stress 
was performed by taping samples to a plate rocker and agitating 
the samples at the maximum speed and angle of the rocker for four 
hours. Silicone oil emulsions were prepared by creating a 10% (v:v) 
silicone oil solution in PBS and blending the resulting formulation 
in a laboratory blender at max speed for 20 seconds. The resulting 
emulsion was then diluted 1:1000 with PBS to obtain an appropriate 
droplet concentration for FlowCam analysis.

FlowCam Analysis: Four different FlowCam 8100 units were used to 
analyze samples containing each of the four protein types. A fresh 
silicone oil sample was also prepared and analyzed in parallel with 
each protein sample. Each FlowCam unit was equipped with a 10X 
objective and a FOV80 flow cell. Prior to analysis, the instrument’s 
fluidics were flushed with a 10% Hellmanex III solution, followed by 
water, then followed by PBS. The instruments were operated at the 
recommended capture settings for protein samples and VisualAI; 
15 dark and light pixel thresholds with 3 close hole iterations, 4 µm 
distance to nearest neighbors, and rolling calibration disabled. The 
background intensity was set to approximately 170. Each FlowCam 
unit was autofocused for best image quality using 15 µm polystyrene 
latex calibration beads. An autoimage mode run was performed 
on calibration beads following autofocusing to confirm that the 
instrument was in focus. To test the robustness of the algorithm, 
the NIST mAb samples were analyzed on an instrument that was 
not focused prior to measurements—a potential error that may be 
encountered when collecting data for particle morphology analysis. 
The instruments were then cleaned as described above and used 
to analyze a PBS “blank” sample which contained negligible particle 
concentrations to assess the background particle content in the 
fluidics. This cleaning and blank sample analysis process was repeated 
until fewer than 1,000 particles/mL were detected in the PBS sample.

Three 1 mL aliquots per sample were analyzed on each of the four 
FlowCam 8100 units. Most of the protein samples were analyzed at a 
0.15 mL/min flow rate and at a 22-frames-per-second autoimage rate. 
Ovalbumin samples and the corresponding silicone oil images were 
analyzed at the FlowCam LO default flow rate (0.2 mL/min) using a 
30-frames-per-second autoimage rate to compensate for the faster 
flow rate. The fluidics were cleaned between measurements using the 
method described earlier. Additional cleaning and PBS blank analysis 
as described earlier was performed between pure protein aggregate 
and silicone oil samples to ensure minimal crossover between sample 
types. All FlowCam datasets were post-processed to filter images of 
particles smaller than 3 µm based on diameter (ESD) as well as to 
remove obvious artifacts like air bubbles to ensure all images were 
made up predominantly of the particle type of interest.

VisualAI Classifier Accuracy: Samples of IVIg, Ovalbumin, and 
NIST mAb aggregates along with their paired silicone oil samples 
were analyzed via VisualAI to assess the classification performance 
on samples known to contain only protein aggregates, silicone oil 
microdroplets, or calibration beads. This analysis was also performed 
on particles with diameter (ESD) values in different size ranges: 3-5 
µm, and >5 µm.  Protein aggregate and silicone oil droplet images 
2-3 µm in size were excluded from this analysis. While VisualAI will 
often achieve classification accuracies between 80-90% in this size 
range, the software’s accuracy is more instrument- and sample-
dependent in this range than for larger particles. It is recommended 
to restrict VisualAI analysis to particles larger than 3 µm. 

As an additional comparison, the performance of VisualAI was 
benchmarked against simplified versions of previously-described 
non-AI methods for silicone oil identification: S-factors-style 
classification14 and random forest classifiers15. In both methods, 
particle properties rather than raw FlowCam images are analyzed to 
determine if an image contains a protein aggregate or a silicone oil 
droplet. Both methods also train separate classifiers on particles of 
different diameter (ESD) ranges to account for changes in apparent
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particle morphology as the size increases. Particles were divided 
into only two size bins for comparative analysis: 3-5 µm and >5 µm. 
Both methods were trained using the same FlowCam data used to 
develop VisualAI, weighting the loss functions for both methods 
based on the relative amount of training data for each class in each 
size bin. The trained methods were then applied to the FlowCam 
data collected as part of this study to assess the overall accuracy of 
each method relative to VisualAI.

S-factor-based classification was performed by computing a modified 
S-factor for each particle and using that value to predict the identity 
of the particle. Modified S-factor values were computed using each 
particle’s aspect ratio, circularity, and sigma intensity. In lieu of 
using manually optimized threshold S-factor values to perform the 
final classification, particle classification was performed by training 
logistic regression classifiers on the S-factor values for the training 
data in each size bin and using the size-appropriate trained classifier 
to analyze subsequent images based on their S-factor.

Random forest classifiers were trained to classify images based 
on their diameter (ESD), aspect ratio, circularity, (mean) intensity, 
sigma intensity, and edge gradient—properties that, excluding 
edge gradient, were identified as being useful for distinguishing 
protein aggregates and silicone oil droplets in the original study15. 
Values of each particle property were normalized to the mean and 
standard deviation of that property over the training set during both 
training and testing to account for the different numerical ranges 
each particle property can assume. Random forests consisting of 
128 trees were trained on particles in each size range. The trained 
classifiers were applied to the data collected during this study in the 
same fashion as the S-factor classifiers.

VisualAI Composition Estimate Accuracy: The primary use case for 
VisualAI is determining the relative composition of protein aggregates 
and silicone oil microdroplets in a sample. To demonstrate the 
software’s performance for this application, samples containing a known 
ratio of protein aggregates and silicone oil droplets were imaged and 
analyzed with the software to estimate the composition of each sample. 
Samples containing pure BSA aggregates generated via shaking stress 
and silicone oil microdroplets were prepared and analyzed as described 
above to determine the particle concentration in each sample. 
Particles between 2-3 µm in equivalent spherical diameter (smaller than 
the lower size limit for VisualAI) were not excluded from this 
concentration estimate. Once measured, these samples were mixed 
and diluted with PBS to prepare mixtures containing approximately 
100,000 particles/mL and either 25%, 50%, or 75% protein aggregates 
and the remainder silicone oil droplets. Three samples were prepared 
per mixture composition. Each of these mixed samples were prepared 
and immediately analyzed on FlowCam as described above to minimize 
any silicone oil-induced protein aggregation. Images of all particles 
larger than 3 µm from each mixture, as well as the pure samples, were 
analyzed to assess the agreement between the predicted and actual 
particle composition in each sample.

RESULTS & DISCUSSION

FlowCam Analysis: Samples containing only protein aggregates or 
silicone oil droplets were analyzed via four different FlowCam 8100 
units. Figure 3 shows sample protein aggregate and silicone oil 
droplet images  from three of the FlowCam units tested. As expected, 
protein aggregates and silicone oil droplets imaged on a single 
FlowCam typically exhibit distinct particle morphologies; silicone oil 
droplets are typically circular with a clear concentric ring structure 
while protein aggregates are amorphous and irregular. While these 
distinct particle shapes are often easy for human operators to 
recognize with training and practice, some protein aggregate and 
silicone oil droplet images can be difficult for even experienced 
operators to differentiate. Some protein aggregate images can 
exhibit round structures resembling that of silicone oil images. 
Out-of-focus silicone oil droplets often exhibit an asymmetric or 
otherwise obfuscated concentric ring structure that can be difficult 
to distinguish from protein aggregates. 

Figure 3. Sample images of protein aggregates and silicone oil droplets captured on 
three different FlowCam 8100 units. Each row corresponds to data on a single unit. 
Relevant FlowCam operation details are included in the header for each row. Protein 
aggregate images were generated from the protein denoted below each collage and 
consist of a mixture of aggregates generated by freeze-thaw and shaking stresses.
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These discriminative morphological features can also change 
depending on the focus position of the unit: particle images from 
the out-of-focus FlowCam (Figure 3, bottom row) are much darker 
on average and often miss hallmarks such as the bright spot in the 
middle of many silicone oil droplets. These issues and others can 
complicate what is theoretically a simple particle classification task 
especially as the particle diameter decreases and the two particle 
types inherently appear more similar.

VisualAI Classification Accuracy: FlowCam images taken from 
samples containing only protein aggregates and silicone oil droplets 
were analyzed via VisualAI to assess the classification accuracy of 
the software. Figure 4 shows confusion matrices indicating the 
classification accuracy of the software on particles like those shown 
in Figure 3. These tables demonstrate that VisualAI achieves near if 
not above 90% classification accuracy across samples, instruments, 
and most size ranges. Importantly, the software achieves this 
performance both at the “recommended” 0.15 mL/min flow rate 
as well as the higher 0.2 mL/min flow rate that is required for  
FlowCam LO operation. The accuracy of the classification improves 
with increasing particle size, achieving around 95% classification 
accuracy on particles >5 µm in size but decreasing by 1-3% on those 
3-5 µm in size for most units. This behavior is expected as images of 
small protein aggregates resemble those of small silicone oil droplets. 
Since these small particles are difficult to classify even for human 
FlowCam operators, it is unsurprising that VisualAI’s performance 
degrades for smaller images in typical FlowCam datasets.

A surprising result from this analysis was VisualAI’s accurate 
classification of FlowCam images of protein aggregates and silicone 
oil droplets captured on a unit that was not properly focused before 
image capture. This demonstrates the robustness of VisualAI, as data 
collected outside of an optimally configured instrument can still 
effectively be analyzed within the size range of the software. While 
autofocusing the instrument is still strongly recommended before 
collecting data for analysis via VisualAI, data collected without 
optimal focusing can still be effectively analyzed via VisualAI.

 

 
Figure 4. Confusion matrices showing the classification performance of VisualAI 
as well as S-factor- and random forest-based methods on protein aggregates and 
silicone oil droplets of different sizes collected on three separate FlowCam units. 
The confusion matrices for each classifier and particle size are placed side-by-side 
in each table for ease of comparison and are delineated by the row and column 
headers. Blue, red, and green-colored matrices correspond to confusion matrices 
for VisualAI, S-factor, and random forest methods, respectively. The protein used to 
generate aggregates as well as any unique features of the data (higher flow rate or 
unfocused images) are shown to the left of each matrix.

Confusion matrices like these show the fraction of images of each particle type 
(matrix rows) that were classified as the three possible labels each classifier can 
return (matrix columns). The accuracy of the classifiers for each sample and size 
range represents the fraction of particles in that sample that was assigned the correct 
label (e.g. images of protein aggregates being classified as protein aggregates). The 
coloration of each cell reflects the fraction of particle images of each type that were 
assigned the corresponding label with darker colors indicating higher fractions.
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Figure 4 also shows the performance of the S-factor- and random 
forest-based silicone oil identification methods when trained on 
the same data used to develop VisualAI and tested on the data 
collected during this study. The accuracy of these other approaches 
was significantly worse on average than that obtained with VisualAI. 
These methods also do not offer as consistent a performance across 
FlowCam units as VisualAI, resulting in occasionally drastic changes 
not only in the overall accuracy but also in the relative frequency 
of protein aggregate predictions to silicone oil droplet predictions—
i.e. they may overestimate the silicone oil content on data from 
one FlowCam but underestimate the content on another unit. It 
should be noted that, unlike the original studies, these methods 
were developed for and applied to FIM data captured on multiple 
instruments rather than a single instrument. While tailoring these 
approaches to individual FlowCam instruments would likely yield 
better classification performance, VisualAI is able to achieve high 
accuracy without any instrument-specific tuning. 

The strong classification accuracy of VisualAI across FlowCam units 
and sample types makes it a powerful and widely-applicable tool for 
differentiating between protein aggregates and silicone oil droplets. 
VisualAI is also easy to integrate into a typical FlowCam-based 
biotherapeutic analysis as the software does not require the time, 
labor, and sample volume investment required to develop other 
techniques for this analysis—including other AI-based methods. 
The agnostic nature of VisualAI, coupled with its robustness, allows 
the software to work well across multiple instrument and sample 
configurations. This feature allows FlowCam users working with a 
variety of biotherapeutic drug products or with multiple FlowCam 
units to use a single, standard software tool for silicone oil monitoring 
across datasets and the comparability benefits associated with a 
unified monitoring strategy.

Additionally, VisualAI achieved >92% recognition of calibration 
beads as “other” particles on these units. The excellent recognition 
of beads can help operators automatically detect and flag images 
of these particles when they appear in datasets, improving the 
accuracy of not just the reported protein aggregate-silicone oil 
droplet concentrations but also the overall particle concentration 
in the sample. Similar performance can be expected with air 
bubbles, since to the untrained eye, air bubble images can resemble 
calibration beads.

VisualAI Composition Accuracy: Samples containing known 
mixtures of protein aggregates and silicone oil droplets were 
analyzed with VisualAI to assess how accurately the software could 
predict the composition of the sample. Figure 5 shows the VisualAI-
predicted fraction of protein aggregates in each mixture as well 
as the pure protein aggregate and silicone oil stocks using the 
particles larger than 3 µm in each sample. While there is some slight 
disagreement between the actual and predicted compositions, 
the predicted protein aggregate content in each sample is strongly 
correlated with the actual particle content in each sample.

This correlation suggests that VisualAI is sensitive to the overall 
protein-silicone oil composition of mixed samples and, in conjunction 
with FlowCam, can be used to assess the fraction of particles in a 
sample that are proteinaceous. The slight disagreement between the 
reported and actual protein aggregate composition can be attributed 
in part to classification errors made by VisualAI. As there is a small 
fraction of misidentified particles in the pure protein aggregate and 
silicone oil droplet samples, the expected compositions on these 
mixtures are slightly closer to 50% than if the model was perfectly 
accurate—a trend observed in the reported compositions in Figure 5.

It is important to note that the particle content larger than 2 µm 
matched the desired composition, including particles 2-3 µm in 
diameter that were not analyzed via VisualAI to determine the 
composition. As with most biotherapeutic samples, a large fraction 
of the particle content detected via FlowCam 8100 with a 10X 
objective are within this excluded size range. Despite ignoring a large 
portion of the images in these artificial protein aggregate-silicone oil 
mixtures, VisualAI was still able to accurately predict the composition 
of protein aggregates and silicone oil droplets in these samples.

Figure 5. VisualAI-predicted protein aggregate compositions in samples containing 
known fractions of protein aggregate particles. Points represent average values 
obtained from triplicate samples. The trendline, equation, and R2 value were 
obtained using linear regression on the actual vs. predicted protein aggregate 
composition data.

Other Considerations: One inherent challenge with protein 
aggregate-silicone oil droplet detection strategies like VisualAI is 
the possibility of observing protein aggregates attached to silicone 
oil droplets and are simultaneously both particle types. These 
hybrid particles are common when protein is exposed to silicone 
oil for an extended period as protein adsorption and aggregation 
can occur on the buffer-oil interface8. This effect was controlled 
for in this study by preparing mixtures immediately before 
performing FlowCam analysis, minimizing the amount of time 
protein adsorption and aggregation that could occur. These hybrid 
particle types may appear more regularly in real-world samples. 
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Like other silicone oil detection strategies, VisualAI does not currently 
detect these hybrid particles and will always assign only one class 
(i.e. protein aggregate or silicone oil droplet) to each particle image. 
While a small number of these hybrids are not likely to significantly 
influence the overall composition estimated by VisualAI, users may 
need to post-process the classified images to identify and potentially 
reclassify these hybrid particles if they appear in significant quantities 
in a sample to get an accurate composition estimate. 

To account for these hybrid particles and other types of non-
protein aggregate, non-silicone oil droplet images, VisualAI provides  
flexibility to the user to define new classes (i.e. extra particle types) that 
images can be manually reassigned to following an initial classification. 
These features allow users to monitor the concentrations of other 
particle types that, at present, are not explicitly monitored by 
VisualAI. These tools can also be used to manually reassign particle 
images between protein aggregate, silicone oil, and other classes, 
allowing the user to further improve the accuracy of the particle type 
concentrations reported by the software.

CONCLUSIONS

VisualAI in combination with FlowCam 8100, and/or FlowCam LO, 
is a robust and powerful integrated flow-imaging solution for 
identifying protein aggregate and silicone oil droplet compositions 
in biotherapeutic samples. VisualAI achieves >90% accuracy both in 
identifying these particle types in individual images and predicting 
the overall composition of these particles in a sample. The off-the-
shelf nature of the software results in easy integration of a protein 
aggregate and silicone oil monitoring approach into existing 
FlowCam-based biotherapeutic analysis workflows, including those 
involving multiple drug products and FlowCam units. VisualAI 
allows researchers to easily get automatic classification of particles 
in biotherapeutics from the FlowCam data, allowing them to make 
more effective decisions about the quality of their drug products 
and improve the overall quality of the therapies patients ultimately 
receive.
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